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Abstract—The paper proposes a decomposing data augmentation method. As against the
available ones, it handles multidimensional time series and during the augmentation retains the
general trend and the structure of multidimensional data based on plant sensor readings. The
gist of the method proposed is the application of multilevel variational mode decomposition
coupled with conventional augmentation techniques. The method was verified using real-life
multidimensional time series for thermocouples and load cells. The augmentation results were
analyzed using MAE criterion as well as stochastic process PDF.
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1. INTRODUCTION

Data augmentation refers to the generation of new synthetic data that maintains similarity to
the original dataset. Currently, the development of data augmentation techniques represents one
of the most pressing challenges in measurement data preprocessing, with applications in several
critical scenarios:

(1) When obtaining a sufficiently large dataset for developing adequate mathematical models is
prohibitively expensive due to high experimental costs.

(2) When addressing missing data issues that frequently occur during practical implementation of
predictive models in industrial settings, caused by system failures, production stoppages, or
other disruptions.

(3) When generating anonymized sensor data is required for model testing and public dissemina-
tion of results.

Conventional data augmentation techniques employ various manipulations of original data to
create synthetic samples, including: time series noise injection [1], scaling method, magnitude
warping [2], time warping, window warping [3], rotation, and permutation [2] and several other
methods [4]. These approaches share a fundamental characteristic: they operate by distorting,
reducing, enlarging, or otherwise modifying the original dataset. This leads to a specific challenge
in their application to sensor signal processing — the potential for excessive distortion relative to
the original signal, which may adversely affect subsequent model development.

Furthermore, the aforementioned methods demonstrate a crucial limitation: they cannot effec-
tively process sets of different signals that are synchronized in time. This represents a common
scenario in industrial applications where simultaneous recording from multiple sensors is required
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for mathematical model development. Such signals typically exhibit shared temporal characteris-
tics (outliers, trends, etc.), but applying independent augmentation to each signal disrupts these
synchronized features, resulting in incorrect data for subsequent analysis.

Recent trends in data augmentation have shifted toward machine learning approaches, particu-
larly:

• Generative adversarial networks (GANs) [5], which synthesize completely new datasets by
learning the underlying data distribution from original samples

• Variational autoencoders (VAEs) [6], which generate data by mixing features from learned
probability distributions rather than creating entirely novel samples

However, these advanced methods present two significant limitations:

(1) They demand substantial volumes of original training data, which are often unavailable in
practical applications.

(2) The augmentation process requires considerable computational time, even for relatively small
signals (e.g., 1000 data points), frequently necessitating segmented dataset processing that
further complicates implementation.

We emphasize that this study does not address methods for generating stationary random pro-
cesses with normal distributions, as these are well-documented in the literature [7] and typically
employ inverse Fourier transform-based approaches.

This paper presents a novel decomposition-based data augmentation method for multivariate
time series that combines multivariate variational mode decomposition with conventional augmenta-
tion techniques. The first section establishes the theoretical foundations of multivariate variational
mode decomposition, traditional augmentation methods, and synthetic data validation criteria.
The second section details the proposed decomposition-based augmentation approach. The third
section demonstrates method verification using actual sensor data.

2. THEORETICAL FRAMEWORK

2.1. Multivariate Variational Mode Decomposition

The multivariate variational mode decomposition (MVMD) was developed by the authors of [8]
as an extension of the variational mode decomposition algorithm (VMD) [9].

VMD represents a fully adaptive and non-recursive algorithm for time-frequency signal analysis.
The fundamental assumption of this method posits that any original signal f can be decomposed
into a finite number K of modes uk (intrinsic mode functions — IMFs), each characterized by
central frequencies ωk and limited bandwidths.

The signal decomposition through VMD is formulated as a constrained variational optimization
problem:

min
{uk},{ωk}

{
K∑
k=1

∥∥∥∥∂t
[
δ (t) +

j

πt

]
∗ uk (t) e−jωkt

∥∥∥∥2
2

}
(1)

subject to the constraint:
K∑
k=1

uk (t) = f where {uk} and {ωk} denote the sets of modes and their

corresponding central frequencies; δ represents the Dirac function; j2 = −1; ‖ · ‖2 indicates the
vector norm; ωk denotes the central frequency; * denotes the convolution integral; each mode
uk (t) = Ak (t) cos (φk (t)) consists of an amplitude envelope Ak and phase φk. The unconstrained
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form of Equation (1), incorporating the augmented Lagrangian method, can be expressed as:

L ({uk} , {ωk} , λ) = α
K∑
k=1
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[
δ (t) +

j

πt

]
∗ uk (t) e−jωkt

∥∥∥∥2
2

+

∥∥∥∥∥f (t)−
K∑
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uk (t)
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2

2

+

〈
λ (t) , f (t)−

K∑
k=1

uk (t)

〉
,

(2)

where L represents the augmented Lagrangian function, λ denotes the Lagrange multiplier, 〈a, b〉 in-
dicates the scalar product of a and b.

The solution is obtained through iterative optimization of un+1
k , ωn+1

k , and λn+1
k using the

alternating direction method of multipliers (ADMM) [10]. The final VMD formulation comprises:

ûn+1
k (ω) =

f̂ (ω)− ∑
i<k

ûn+1
i (ω)− ∑

i>k
ûni (ω) + λ̂n (ω) /2

1 + 2α
(
ω − ωn

k

)2 , (3)

ωn+1
k =

∫∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω , (4)

λ̂n+1 (ω) = λ̂n (ω) + τ

[
f̂ (ω)−

∑
k

ûn+1
k (ω)

]
, (5)

where ∧ denotes the Fourier transform; n represents the iteration number; α is the quadratic
penalty coefficient; τ indicates the time step.

The MVMD method extends VMD by enabling the alignment of common frequencies across
multiple synchronized signals (C). This capability proves particularly valuable in numerous scientific
and engineering applications.

2.2. Augmentation by Magnitude Warping and Window Warping

The magnitude warping augmentation algorithm modifies signal amplitudes within a specified
window through multiplication by random scalars [2]. This amplitude transformation is imple-
mented by convolving the data window with a smooth curve varying around unity. The method’s
key parameters include: (σ) the root mean square value of random noise, (knots) the number of
control points defining the smooth warping curve [11].

The window warping augmentation algorithm distorts data within a randomly selected time se-
ries window through either expansion or compression (Fig. 1) [3]. The primary parameter governing
this method is the original window size.

Fig. 1. Expanding and compressing data in the selected window.
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2.3. Criteria for Evaluating Synthetic Data Adequacy

Currently, no universal standards exist for assessing data augmentation algorithm quality. The
development of appropriate metrics for evaluating synthetic data quality and diversity remains an
open research question [12].

The most widely adopted criterion for synthetic data validation is the mean absolute error
(MAE):

MAE =

∑n
i=1 |yi − xi|

n
, (6)

where yi represents the synthetic data set, xi denotes the original dataset, and n indicates the time
series length.

Alternative approaches employ neural networks for quality assessment. Yoon et al. [13] pro-
posed evaluating synthetic data quality using a discriminative model comprising a two-layer LSTM
network trained on original data. Similarly, Esteban et al. [14] developed a quality metric based
on the mean absolute error of predictions from models trained on synthetic data.

For our analysis, we employ MAE while additionally comparing: probability density functions
(PDFs) of original and synthetic processes; key statistical parameters (kurtosis and skewness).

3. PROPOSED METHOD FOR DATA AUGMENTATION

We present a novel decomposition-based data augmentation method designed to synthesize mul-
tivariate datasets while preserving critical time series characteristics, including trends and outliers.
From an applied perspective, industrial applications typically involve synchronous data acquisi-
tion from heterogeneous sensors, which subsequently serve as input for neural network models.
However, existing augmentation methods predominantly treat each signal independently, generat-
ing statistical processes that mimic individual signals while disregarding inter-signal relationships.
This approach may introduce artifacts that compromise subsequent analysis.

Consider the example of process temperature sensor data (Fig. 2), where all sensors exhibit a
temperature drop within the time interval (3.8 . . . 4.3) · 104 minutes, corresponding to equipment
shutdown. This shared temporal feature must be preserved during synthetic data generation.

Fig. 2. Example of temperature change implementation with equipment shutdown zone.
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Fig. 3. Flowchart of the decomposition augmentation algorithm.

Furthermore, the relative temperature hierarchy t1 > t2 > t3 > t4 must be maintained throughout
the augmented dataset.

Our decomposition-based augmentation method employs multivariate variational mode decom-
position (MVMD) to separate each source signal into constituent modes (narrowband processes)
with simpler structures. We then apply conventional augmentation techniques — magnitude warp-
ing and window warping — independently to each mode. Finally, we reconstruct the augmented
signal by summing the processed modes, yielding synthetic multivariate datasets. Figure 3 presents
the complete algorithm flowchart.

Like all augmentation methods, our approach incorporates several tunable parameters that
significantly influence the results:

(1) MVMD Parameters:

• The number of decomposition modes (m) must be carefully selected based on signal
non-stationarity and length. For typical applications, we recommend 4–6 modes.
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• The first (low-frequency) mode may remain unaugmented to preserve global signal struc-
ture, or alternatively, may undergo augmentation with reduced intensity.

(2) Conventional Augmentation Parameters:

• Magnitude Warp: (σ) Standard deviation of Gaussian noise, (knots) Number of control
points for the smoothing curve.

• Window Warp: (window ratio) Size of the original window, (scales) Distortion factor
for window expansion/compression.

The selection of magnitude warping (for amplitude modification) and window warping (for tem-
poral distortion) provides comprehensive signal transformation capabilities across both amplitude
and time domains.

4. EVALUATION OF THE APPLICABILITY OF THE PROPOSED METHOD

4.1. Sensor Data Characteristics

The proposed decomposition-based augmentation method was validated using temperature mon-
itoring data acquired from multiple bearing support sensors in industrial equipment [15]. As shown
in Fig. 4, the dataset comprises four synchronized time series with a sampling frequency of 1 minute,
spanning 27 hours of continuous operation, with each signal containing 10 000 data points. The
temporal synchronization of the acquisition system ensures consistent representation of trends and
behavioral patterns across all measurement channels.

4.2. Augmentation Results and Validation

Implementation of the decomposition augmentation algorithm with the parameters specified in
Table 1 yielded synthetic temperature data that maintains several critical characteristics of the
original dataset. By deliberately excluding augmentation of the first low-frequency MVMD mode,
we preserved the fundamental structure of the time series while introducing controlled variations
in other frequency components.

Table 1. Parameters of decomposition augmentation

MVMDe Magnitude-Warp Window-Warp

Number of modes, units Sigma, units Knots, units Window ratio, units Scales

6 0.2 10 000 0.5 [0.5 4.0]

The synthetic data successfully maintains both the characteristic temperature drop correspond-
ing to equipment shutdown events and the consistent temperature hierarchy t1 > t2 > t3 > t4
throughout the generated dataset. Comparative analysis of the original and synthetic signals
(particularly evident in Fig. 6 for channel t1) demonstrates effective preservation of global trends
while introducing natural variability in oscillation characteristics, including both amplitude and
frequency components.

Statistical evaluation reveals close agreement between original and synthetic datasets. The prob-
ability density functions shown in Fig. 7 exhibit similar distributions, with root mean square values
differing by less than 1%. The kurtosis and skewness parameters show deviations within 14%
and 16% respectively, while maintaining the essential characteristics of the original signals. Quan-
titative assessment using mean absolute error yields values of 0.06 (6%) for t1 and t2, 0.04 (4%)
for t3, and 0.02 (2%) for t4, confirming the method’s accuracy.

The critical advantage of the MVMD-based approach becomes particularly evident when com-
paring direct augmentation with the proposed decomposition method (Fig. 8). While conventional
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Fig. 4. Implementations of signals from temperature sensors (left) and an enlarged fragment of the imple-
mentations (right).

Fig. 5. Implementations of synthetic signals from temperature sensors (left) and an enlarged fragment of the
implementations (right).

Fig. 6. Implementations of the original signal and the first synthetic signal (t1) from the multivariate data
set (left) and an enlarged fragment of the implementations (right).
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Fig. 7. Distribution densities of original and synthetic signals and their statistical characteristics.

Fig. 8. The original signal and the first synthetic signal (t1) from the multivariate data set without preliminary
decomposition of signals (left) and with decomposition (right).

augmentation fails to maintain temporal alignment and characteristic features, our method success-
fully preserves both synchronized events and global signal properties, demonstrating its superior
performance for multivariate time series augmentation.

5. CONCLUSION

This study has presented an innovative decomposition-based approach for augmenting multi-
variate time series data, combining multivariate variational mode decomposition with conventional
augmentation techniques. The developed method fundamentally advances current capabilities by
preserving critical temporal characteristics while maintaining synchronization across multiple sensor
signals — a crucial requirement for industrial monitoring applications where data from heteroge-
neous sensors must remain temporally aligned.
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Through experimental validation using real-world temperature sensor data, we have demon-
strated the method’s ability to maintain both global data structure and precise inter-sensor re-
lationships. The synthetic data preserves required operational characteristics such as the tem-
perature hierarchy while introducing appropriate variability, with quantitative analysis confirming
close agreement through mean absolute error metrics ranging between 2–6%. Statistical evaluation
further substantiates the method’s effectiveness, showing minimal deviations in key parameters
including root mean square values (under 1% difference), kurtosis (within 14% variation), and
skewness (below 16% deviation).

The comparative analysis provides compelling evidence for the necessity of the MVMD pre-
processing stage, clearly demonstrating its superiority over direct augmentation approaches in
preserving synchronized events and temporal relationships within multivariate datasets. This ca-
pability proves particularly valuable for industrial condition monitoring systems where maintaining
temporal correlations between sensor signals is paramount for accurate diagnostics and predictive
maintenance.
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